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Abstract—Recently, attention is particularly focused on the 

research of Software defined network (SDN) for reducing network 

management complexity. The one of a key technology of SDN is 

OpenFlow. OpenFlow provide a centralized controller for 

network and the scalability of controller is main issue.  In this 

paper, we propose a high-speed routing engine for improve the 

scalability of OpenFlow controller. Unlike conventional 

architectures of routing engine, the proposal is a hardware routing 

engine that using on-chip diorama network.  We define the 

Diorama Network as a virtual emulated network in a chip. We 

implement a prototype of the routing engine on an actual 

dynamically reconfigurable processor (DRP), and test results show 

that the prototype can execute the shortest path calculation 19 

times faster than the current approach. 

 
Index Terms—Software-Defined Network, OpenFlow, Routing 

Engine, Dynamically Reconfigurable Processor (DRP) 

 

I. INTRODUCTION 

oday, the Internet is becoming the key global infrastructure 

for telecommunication. The rapid adoption of the Internet is 

promoting the growth of the world economy and globalization. 

The Internet traffic is rapidly increasing due to the increasing 

number of users and their use of higher bandwidth services. 

Therefore, the cost and complexity of network management 

becomes a challenging problem.  Software-defined network [1] 

becomes the most remarkable approach to network traffic 

control.   

The SDN architecture decouples the forwarding plane and 

control plane of network device such as router or switch, and 

runs control plane in software. Decoupling makes the network 

more advanced since the speeds at which their technologies 

evolve are different. OpenFlow [2-3] is the key technology of 

SDN, because OpenFlow can provide interoperability and 

better performance to SDNs.  Network Operators could define 

traffic flows and determine how packets are forwarded through 

switches or routers over a network using a remote OpenFlow 

controller. The remote OpenFlow controller can communicate 

OpenFlow switch by OpenFlow protocol via a secure channel. 

OpenFlow Controller is programmable, Service Provider can 
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provide their unique services very convenient, also can 

implement the traffic engineering and management method 

faster.  

OpenFlow networks have been implemented on some 

university campuses in US [4]. The large scale OpenFlow based 

network is also researched. The Global Environment for 

Network Innovations (GENI) project has just start to applying 

OpenFlow in its network infrastructure [2], [6].  In [5], a 

nation-wide OpenFlow based network on the NICT JGN2plus 

testbed is deployed. Therefore the OpenFlow is not only 

researched for a campus network, also for the large-scale 

network. The OpenFlow network controller is centralized 

control node for one a network. Therefore, the scalability and 

reliability becomes key issues of controller. A data center that 

has 100 edge switches, the centralized controller can expect to 

see about 10 million flow requests per second [7].  When 

network is large and traffic is heavy, routing becomes a 

challenging problem of OpenFlow controller, since bed routing 

speed will increase the response speed of controller for each 

OpenFlow switch in forwarding plane and leading bed 

performance of OpenFlow network.  

In this paper, we propose a high speed routing engine and 

establishing a prototype of routing engine on a Dynamically 

Reconfigurable Processor (DRP). This approach makes use of 

an on-chip emulated network that is called diorama network. 

Emulated packets are transmitted throughout the emulated 

network, and the shortest path is identified because the first 

emulated packet from the source node to the destination 

indicates the shortest path. We develop a prototype of the 

routing engine on an actual DRP. 

This paper as organized as follows. Section Ⅱ describes the 

architecture of OpenFlow network. In Section Ⅲ, we explain 

the basic algorithm of the proposed routing engine as 

implemented on a DRP. The prototype of the routing engine is 

shown in Section Ⅳ, and test results are provided in Section Ⅴ

. Finally, we summarize this paper in Section Ⅵ. 

 

II. OPENFLOW ARCHITECTURE 

The current router consists of two main functions; forwarding 

and control [8]. SDN uses the terms forwarding element and 

control element to refer to blocks that offer forwarding 

functions and control functions, respectively. The control 

element of the current router corresponds to its operating 

system, such as IOS [9], JUNOS [10], OpenFlow. The 
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forwarding element and control element are tightly coupled in 

the current router as shown in the left side of Fig. 1. SDN 

architecture, on the other hand, decouples them as shown in the 

right side of Fig. 1. Since the forwarding element and control 

element have different rates of evolution, decoupling is 

advantageous because they can be advanced independently.   

 
  Fig. 1.  Forwarding element and control element are decoupled in Software 

–Defined network  

 

The controller is controlling and managing the tasks of its 

corresponding forwarding element such as routing. A control 

element communicates with its forwarding element by the 

Forwarding Element Control Protocol (FECP), such as GSMP 

[11] or OpenFlow Protocol [12]. It is an interface between 

forwarding elements and control elements. For example, a 

control element sets the forwarding configuration via FECP. 

Across the network, the control elements form the control plane, 

and the forwarding elements the forwarding plane. 

A control element does not have to be co-sited with its 

forwarding element. Fig 2 shows that the control plane lies in 

the remote place. Control elements can be virtualized as a 

software service because they are physically decoupled from 

their forwarding elements. As a result, control elements run on 

virtual machines, and are likely to be placed in a server in a data 

center or central office of service provider.  

The OpenFlow architecture is the key technology of SDN. 

OpenFlow based networks have three main parts: OpenFlow 

controller, OpenFlow switch and OpenFlow protocol. Service 

provider or user can program OpenFlow controller. Several 

open source platforms such as NOX [13-14], Trema [15], 

Beacon/Floodlight [16-17], is provided for develop controller. 

OpenFlow switch has tow types: software switch such as Open 

vSwitch [18] and hardware switch such as NEC UNIVERGE 

PE5240/PF5820, IBM RacSwitch G8264 and HP 

3500/5400/8200. OpenFlow protocol provides the handshake 

function, sending control command message, reporting switch 

status and so on.    

Figure 2 show our network architecture. The on-chip routing 

engine is the high-speed engine for calculate route for every 

traffic flow.  With different services, the physical network can 

be virtualized as a virtual network that is called slice.  In our 

approach, different slice is used for different service during 

routing.  Fig 3 shows an example.  The OpenFlow controller can 

maintain these two slices, and provide the optimal flow 

controlling in these two topologies. 

 

 

 
                    Fig. 2.  OpenFlow Based network architecture  

 

 

 
  (a) A slice when network load is high 

 
(b) A slice when network load is low 

                    Fig. 3.  Several virtual networks in OpenFlow Controller  

 

 We propose that the routing engine be based on a Dynamically 

Reconfigurable Processor (DRP). The architecture of the 
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proposed routing engine is described in detail in the next 

section. 

III. ROUTING ENGINE ON DRP 

The recently advances in the performance of reconfigurable 

devices, such as Field Programmable Gate Array (FPGA) and 

Dynamically Reconfigurable Processor (DRP), has been 

significant [19]. We can design dedicated hardware with 

sophisticated functions by using these types of devices. They are 

very attractive since they combine high performance, due to 

their hardware implementation, with the ability to dynamically 

alter their internal circuit at high speed, for example, within a 

few clock cycles. Our routing engine takes full advantage of the 

dynamic reconfigurability of DRPs. 

Our proposal is to make an on-chip emulated network that 

corresponds to the real network. We transmit emulated packets 

through the emulated network and observe the behavior of the 

emulated links and routers on the emulated. That is, we can 

experimentally optimize the network. Fig. 4 shows a real 

network and its emulated twin on a DRP.   

 

 
Fig. 4. The emulated network, which corresponds to the real network, is 

constructed on DRP. 

 

Two types of emulated packet are defined. The first type is 

called the emulated flooding packet (EFP). An EFP has three 

main fields: the first field holds the index number of the source 

router, the second field the bandwidth of traffic demand from 

the source router, and the third field is the index number of a 

link. 

Each emulated router can get global information from the 

EFPs sent over the emulated network. The second type is called 

the emulated path search packet (EPSP). An EPSP has two main 

fields: bandwidth recording field and link index number 

recording field. The former is used to record the smallest of the 

links' bandwidths along the path. The latter is used to record the 

index numbers of all links passed. 

The metrics of delay, link utilization and bandwidth, are 

considered in the TE method that is run on the emulated 

network. With regard to link utilization, we can make the link 

cost change dynamically according to the number of passed 

packets. For example, a packet count function can be added to 

the emulated links. When the number of passed packets 

surpasses a threshold set by the network administrator, the link 

cost is increased. Therefore, this link will not be chosen when 

next searching for the shortest path. Bandwidth is an emulated 

link parameter and both EFPs and EPSPs have a field to record 

the bandwidth of each link passed. Each emulated link generates 

delay of several clock cycles according to the real link cost.  

Fig. 5 shows an example of parameter initialization by using 

EFPs. In this example, the paths available to the two EFPs are 

abbreviated. One EFP is from emulated node X and its 

bandwidth is 80 Mbps. The other EFP is from emulated node Y 

and its bandwidth is 30 Mbps. Therefore, the bandwidth of the 

emulated link #2 remains 50 Mbps. The emulated packet 

counter of link #2 is changed from 0 to 2. If the threshold was set 

at two, the emulated link delay is increased from 8 to 10 (The 

step value is also set by the network administrator). 

 

 
       
             Fig. 5. Parameter deterministic method on emulated links 

 

The optimal path is located by conducting a simple parallel 

shortest path search. When a new traffic demand arises, an 

EPSP is broadcast from the source router to each branch. The 

bandwidths of passed links are recorded in the bandwidth field 

of the EPSP. When the EPSP arrives at a new router, it is 

rebroadcasted. If the EPSP arrives at a new link that has smaller 

bandwidth than the value recorded in bandwidth field of the 

EPSP, the smaller bandwidth value is written into the bandwidth 

field. The index number of the passed link is also recorded in the 

EPSP. Finally, EPSPs are collected at the destination router. 

The EPSP that arrives first identifies the path that has the 

smallest delay. Since the smallest bandwidth along the path is 

also recorded in the EPSP, we can choose the optimal path that 

has enough bandwidth and acceptable delay for each traffic 

demand.  

Fig. 6 shows an example of bandwidth recording. In this 

example, an EPSP arrives at emulated link ¥#2. The bandwidth 

recorded in the EPSP is 80, which is larger than the bandwidth 

of emulated link #2, 50. Thus 80 is replaced by 50 in the EPSP. 

The bandwidth value of emulated link #3 is 90 which is larger 

than 50, and so the value of 50 is not replaced.  

 

 
      Fig. 6. Link bandwidth recording method using emulated links 

Our simple parallel shortest path search algorithm sends an 
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EPSP across each path between one source router and one 

destination router. The packet that transits the shortest path will 

arrive at the destination node first. This algorithm is 

summarized as follows.  

     Step1  Assign index numbers to all links and routers. 

     Step2  The source router issues an emulated packet and 

broadcasts it to each branch known to the source node. 

     Step3 When the emulated packet passes through a link, the 

index number of the link is recorded in the emulated packet. 

When the emulated packet arrives at a neighboring router, the 

emulated packet is rebroadcasted over all outgoing links except 

the mirror of the incoming link. 

  Step 4  Repeat step 3 until the first emulated packet arrives at 

the destination node. The information of the first arrived 

emulated packet includes the shortest path. 

 

IV. PROTOTYPE IMPLEMENTATION OF THE PROPOSED ROUTING 

ENGINE 

We constructed an emulated network on a commercially 

available DRP, DAPDNA-2, developed by IPFlex Inc [20-21]. 

DAPDNA-2 consists of a Digital Application Processor (DAP), 

a high-performance RISC core, and Distributed Network 

Architecture (DNA). The DNA is embedded in an array of 376 

Processing Elements (PEs), which are comprised of 

computation units, memory, synchronizers, and counters. The 

DNA has 4 memory banks to store configurations. Only 1 

memory bank is active while the others are for background 

storage. DNA can change the network’s configuration by 

loading one of the three stored configurations in background 

memory. 

An emulated network is constructed by linking emulated 

nodes, each of which consists of several PEs. We set the 

parameters of each PE to emulate the various functions 

possessed by real routers and links. Figure 

¥ref{fig:emulated_network} is an example of our emulated 

network construction. There are 6 routers and 10 links in the 

real network, so we construct 6 emulated routers and 10 

emulated links connect these emulated routers and links. The 

word size of DAPDNA-2 is 32 bits, so we read 32-bit data as an 

EPSP from the main memory of DAPDNA-2, and transmit it 

through the emulated network. The emulated packets are 

broadcasted from the source router. 

Finally, we collect the first EPSP at the destination router and 

write it into memory where it can be accessed for later use. Fig 7 

shows an example of designing a virtual node. To replicate a 

degree-3 node, we use three PEs to construct a virtual node that 

has 3 input ports and 3 output ports.    

 

 
 
Fig. 7. Example of virtual node structure having node degree of three 

 Our algorithm was implemented on the evaluation board, 

DPADNA-EB4. DPADNA-EB4 is a full-size PCI board as 

shown in Fig 8 and is simply plugged into a PCI slot of the PC. 

There are two DAPDNA-2 processors on each DPADNA-EB4.   

 

 
 Fig. 8. The evaluation board, DPADNA-EB4 

A. Implementation of shortest path search 

In this implementation of shortest path search, we define the 

bitmap of the EPSP; the link delay is fixed. This implementation 

does not consider bandwidth. The design of the virtual node and 

virtual link is also described in this subsection.  

We first describe the bitmap of the EPSP, see Fig. 7. In this 

example, a 32-bit EPSP is divided into two fields. The lower 26 

bits are link index number field. The upper 6 bits is the link 

bandwidth field but this field is not used in this implementation. 

This EPSP bitmap supports networks with up to 26 links. To 

handle a network that has 52 links, we would simply use two 32 

bits EPSPs to collect path information. (We define these two 

packets as one set.) Every branch point rebroadcasts the set of 

emulated packets. 

 
                        Fig. 9 Example of bitmap of an EPSP  

 

 

The functions of an emulated router are shown as follows.  

� Copy the EPSP from the input port. 

� Send the EPSP to all other output ports except the output 

port that corresponds to the input port. 

�  Avoid packet contention. This means preventing EPSP 
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conflict when two or more EPSPs arrived at an 

emulated router at the same time.  

The functions of an emulated link are shown as follows. 

 

�  Record the index number of the link into the arrived 

emulated packet. 

� Prevent the looping of emulated packets. This is done by 

checking the bitmap of the emulated packet. 

� Generate a delay corresponding to the link cost of the 

real link. Delay is expressed in units of the clock 

cycle of DAPDNA-2. 

Fig. 11 shows an example of our shortest path search on 

DAPDNA-2. There are 6 routers and 9 links in Fig. 11. First, we 

assign index numbers to all routers and links. In the example, all 

32 bits of an EPSP are used for recording the index numbers of 

links; 9 bits are shown in the example because there are only 9 

links. Each EPSP is initialized with 000000000. 

 

 
                            Fig. 10. Execution example of proposed algorithm 

 

Step 1 At the source router, we broadcast the emulated packet 

containing 000000000. The emulated packet is passed to link 

¥#1 and link ¥#2.  

Step 2 The emulated packets pass through link ¥#1 and ¥#2, 

and the link numbers are recorded in the emulated packets. The 

outputs of link ¥#1 and link ¥#2 are 000000001 and 000000010, 

respectively. Next, node 1 sends 000000001 to link ¥#3 and ¥#4 

in the same way. The output emulated packets of link ¥#3 and 

¥#4 are 000000101 and 000001001.   

 Step 3 When the EPSP arrives at other nodes; step 2 is 

repeated until the first EPSP arrives at the destination router. 

Step 4 Finally, the shortest path information is determined 

from the contents of the first EPSP. 

    In the network shown in Fig. 11, the first EPSP to arrive at the 

destination router holds 11000101.  This means that the shortest 

path is formed by links #1, #3, #7 and #8. As a result, the 

shortest path is A-B-D-E-F. Our proposed approach also can 

collect all route information between a source node and a 

destination node, i.e. not just the shortest path. 

 

B. Change configuration dynamically 

| DAPDAN-2 has three internal memory banks. Therefore, 

we can store three network topologies as a hardware 

configuration in DAPDNA2. If the configuration is stored in 

internal memory, DAPDAN-2 can change the configuration 

only in few seconds. Fig. 12 shows an example. In this example, 

three different network topologies are stored in memory bank.   

 
       Fig. 11. Three slice in DAPDNA-2 

V. EXPERIMENTAL RESULTS 

    In this section, we compare the shortest path calculation time 

between proposed method and the method that used in the 

current routing system. We implement the shortest path search 

in our emulated network. We compare it to Dijkstra’s algorithm, 

as well as Breadth first search method. The current path search 

methods are implemented as C applications and we ran them on 

a 3 GHz Intel Pentium 4 processor. Our method is executed on 

the 166 MHz reconfigurable processor of DPADNA-2. 

A. Comparison result of shortest path calculation 

  We measured the calculation clocks of Dijkstra’s algorithm 

and our proposed algorithm. The network topology is the same 

as that in Figure 4. We executed Dijstra’s algorithm and our 

proposed algorithm 100 times and averaged the execution 

times. The simulation results are shown in Table 1. 

    

   The execution time of our algorithm is faster than the 

execution time of Dijkstra's algorithm because our algorithm is 

executed in parallel. However, the Dijkstra's algorithm runs 

serially. Therefore, under the same conditions, our algorithm 

runs faster than Dijkstra's algorithm. Additionally, the 

calculation time of Dijkstra's algorithm will increase in a larger 

network. The calculation time of our algorithm only depends on 

TABLE I 
EXECUTION TIME OF DIJKSTRA’S ALGORITHM AND OUR PROPOSED ALGORITHM 

Execution time: (μs) 

 

  Dijkstra’s algorithm 

 

 

      Proposed Algorithm 
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the total cost of the shortest path. Therefore, our algorithm can 

search shortest path faster even if the network is large. 

B. Comparison result of the all paths calculation 

 In this sub section, we compared the all paths calculation 

time. In this paper, all paths search is to find paths connecting 

the given source node to anywhere in the network. For 

example, the source is node a fig.10. All paths search is to list 

all shortest path between node A and other nodes that includes 

node B, node C, node D, node E and node F. We measured the 

execution time taken by the breadth first search algorithm and 

our all path pattern search method to collect all route 

information. The results are shown in Table 2. 

 

 We can see that our algorithm collects all route information 

faster than the breadth first search algorithm because our 

algorithm broadcasts emulated packets and collects link 

information from each route at the same time. 

VI. CONCLUSION 

The SDN approach is a useful solution to a lot of current 

network problem such as management. OpenFlow is a key 

technology to realize SDN and the scalability of Openflow 

controller is one of a major issue. When the controller manage a 

large network, routing speed is becomes a problem. We 

challenged the scalability of the OpenFlow controller. In this 

paper, we proposed an on-chip routing engine allows OpenFlow 

controller to achieve high-speed path calculation. We 

implemented a prototype of the routing engine on a DRP, and 

performance evaluations on path calculation were conducted. 

The results show that our prototype routing engine is 19 times 

faster than the current shortest path search method that is 

Dijkstra's algorithm. Therefore our proposed system can 

improve the routing speed of OpenFlow controller and enable 

high scalability of OpenFlow controller. 
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