

1

Abstract—Recently, attention is particularly focused on the

research of Software defined network (SDN) for reducing network

management complexity. The one of a key technology of SDN is

OpenFlow. OpenFlow provide a centralized controller for

network and the scalability of controller is main issue. In this

paper, we propose a high-speed routing engine for improve the

scalability of OpenFlow controller. Unlike conventional

architectures of routing engine, the proposal is a hardware routing

engine that using on-chip diorama network. We define the

Diorama Network as a virtual emulated network in a chip. We

implement a prototype of the routing engine on an actual

dynamically reconfigurable processor (DRP), and test results show

that the prototype can execute the shortest path calculation 19

times faster than the current approach.

Index Terms—Software-Defined Network, OpenFlow, Routing

Engine, Dynamically Reconfigurable Processor (DRP)

I. INTRODUCTION

oday, the Internet is becoming the key global infrastructure

for telecommunication. The rapid adoption of the Internet is

promoting the growth of the world economy and globalization.

The Internet traffic is rapidly increasing due to the increasing

number of users and their use of higher bandwidth services.

Therefore, the cost and complexity of network management

becomes a challenging problem. Software-defined network [1]

becomes the most remarkable approach to network traffic

control.

The SDN architecture decouples the forwarding plane and

control plane of network device such as router or switch, and

runs control plane in software. Decoupling makes the network

more advanced since the speeds at which their technologies

evolve are different. OpenFlow [2-3] is the key technology of

SDN, because OpenFlow can provide interoperability and

better performance to SDNs. Network Operators could define

traffic flows and determine how packets are forwarded through

switches or routers over a network using a remote OpenFlow

controller. The remote OpenFlow controller can communicate

OpenFlow switch by OpenFlow protocol via a secure channel.

OpenFlow Controller is programmable, Service Provider can

Shan Gao, Sho Shimizu, and Naoaki Yamanaka are with the Yamanaka

Laboratory,

Department of Information and Computer Science,

Keio University, 3-14-1

Hiyoshi, Kohoku, Yokohama, Kanagawa, JAPAN 223-8522

(e-mail:shan.gao@yamanaka.ics.keio.ac.jp)

provide their unique services very convenient, also can

implement the traffic engineering and management method

faster.

OpenFlow networks have been implemented on some

university campuses in US [4]. The large scale OpenFlow based

network is also researched. The Global Environment for

Network Innovations (GENI) project has just start to applying

OpenFlow in its network infrastructure [2], [6]. In [5], a

nation-wide OpenFlow based network on the NICT JGN2plus

testbed is deployed. Therefore the OpenFlow is not only

researched for a campus network, also for the large-scale

network. The OpenFlow network controller is centralized

control node for one a network. Therefore, the scalability and

reliability becomes key issues of controller. A data center that

has 100 edge switches, the centralized controller can expect to

see about 10 million flow requests per second [7]. When

network is large and traffic is heavy, routing becomes a

challenging problem of OpenFlow controller, since bed routing

speed will increase the response speed of controller for each

OpenFlow switch in forwarding plane and leading bed

performance of OpenFlow network.

In this paper, we propose a high speed routing engine and

establishing a prototype of routing engine on a Dynamically

Reconfigurable Processor (DRP). This approach makes use of

an on-chip emulated network that is called diorama network.

Emulated packets are transmitted throughout the emulated

network, and the shortest path is identified because the first

emulated packet from the source node to the destination

indicates the shortest path. We develop a prototype of the

routing engine on an actual DRP.

This paper as organized as follows. Section Ⅱ describes the

architecture of OpenFlow network. In Section Ⅲ, we explain

the basic algorithm of the proposed routing engine as

implemented on a DRP. The prototype of the routing engine is

shown in Section Ⅳ, and test results are provided in Section Ⅴ

. Finally, we summarize this paper in Section Ⅵ.

II. OPENFLOW ARCHITECTURE

The current router consists of two main functions; forwarding

and control [8]. SDN uses the terms forwarding element and

control element to refer to blocks that offer forwarding

functions and control functions, respectively. The control

element of the current router corresponds to its operating

system, such as IOS [9], JUNOS [10], OpenFlow. The

A High-Speed Routing Engine for Software

Defined Network

Shan Gao, Sho Shimizu, Satoru Okamoto and Naoaki Yamanaka

T

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), August Edition, 2012

2

forwarding element and control element are tightly coupled in

the current router as shown in the left side of Fig. 1. SDN

architecture, on the other hand, decouples them as shown in the

right side of Fig. 1. Since the forwarding element and control

element have different rates of evolution, decoupling is

advantageous because they can be advanced independently.

 Fig. 1. Forwarding element and control element are decoupled in Software

–Defined network

The controller is controlling and managing the tasks of its

corresponding forwarding element such as routing. A control

element communicates with its forwarding element by the

Forwarding Element Control Protocol (FECP), such as GSMP

[11] or OpenFlow Protocol [12]. It is an interface between

forwarding elements and control elements. For example, a

control element sets the forwarding configuration via FECP.

Across the network, the control elements form the control plane,

and the forwarding elements the forwarding plane.

A control element does not have to be co-sited with its

forwarding element. Fig 2 shows that the control plane lies in

the remote place. Control elements can be virtualized as a

software service because they are physically decoupled from

their forwarding elements. As a result, control elements run on

virtual machines, and are likely to be placed in a server in a data

center or central office of service provider.

The OpenFlow architecture is the key technology of SDN.

OpenFlow based networks have three main parts: OpenFlow

controller, OpenFlow switch and OpenFlow protocol. Service

provider or user can program OpenFlow controller. Several

open source platforms such as NOX [13-14], Trema [15],

Beacon/Floodlight [16-17], is provided for develop controller.

OpenFlow switch has tow types: software switch such as Open

vSwitch [18] and hardware switch such as NEC UNIVERGE

PE5240/PF5820, IBM RacSwitch G8264 and HP

3500/5400/8200. OpenFlow protocol provides the handshake

function, sending control command message, reporting switch

status and so on.

Figure 2 show our network architecture. The on-chip routing

engine is the high-speed engine for calculate route for every

traffic flow. With different services, the physical network can

be virtualized as a virtual network that is called slice. In our

approach, different slice is used for different service during

routing. Fig 3 shows an example. The OpenFlow controller can

maintain these two slices, and provide the optimal flow

controlling in these two topologies.

 Fig. 2. OpenFlow Based network architecture

 (a) A slice when network load is high

(b) A slice when network load is low

 Fig. 3. Several virtual networks in OpenFlow Controller

 We propose that the routing engine be based on a Dynamically

Reconfigurable Processor (DRP). The architecture of the

3

proposed routing engine is described in detail in the next

section.

III. ROUTING ENGINE ON DRP

The recently advances in the performance of reconfigurable

devices, such as Field Programmable Gate Array (FPGA) and

Dynamically Reconfigurable Processor (DRP), has been

significant [19]. We can design dedicated hardware with

sophisticated functions by using these types of devices. They are

very attractive since they combine high performance, due to

their hardware implementation, with the ability to dynamically

alter their internal circuit at high speed, for example, within a

few clock cycles. Our routing engine takes full advantage of the

dynamic reconfigurability of DRPs.

Our proposal is to make an on-chip emulated network that

corresponds to the real network. We transmit emulated packets

through the emulated network and observe the behavior of the

emulated links and routers on the emulated. That is, we can

experimentally optimize the network. Fig. 4 shows a real

network and its emulated twin on a DRP.

Fig. 4. The emulated network, which corresponds to the real network, is

constructed on DRP.

Two types of emulated packet are defined. The first type is

called the emulated flooding packet (EFP). An EFP has three

main fields: the first field holds the index number of the source

router, the second field the bandwidth of traffic demand from

the source router, and the third field is the index number of a

link.

Each emulated router can get global information from the

EFPs sent over the emulated network. The second type is called

the emulated path search packet (EPSP). An EPSP has two main

fields: bandwidth recording field and link index number

recording field. The former is used to record the smallest of the

links' bandwidths along the path. The latter is used to record the

index numbers of all links passed.

The metrics of delay, link utilization and bandwidth, are

considered in the TE method that is run on the emulated

network. With regard to link utilization, we can make the link

cost change dynamically according to the number of passed

packets. For example, a packet count function can be added to

the emulated links. When the number of passed packets

surpasses a threshold set by the network administrator, the link

cost is increased. Therefore, this link will not be chosen when

next searching for the shortest path. Bandwidth is an emulated

link parameter and both EFPs and EPSPs have a field to record

the bandwidth of each link passed. Each emulated link generates

delay of several clock cycles according to the real link cost.

Fig. 5 shows an example of parameter initialization by using

EFPs. In this example, the paths available to the two EFPs are

abbreviated. One EFP is from emulated node X and its

bandwidth is 80 Mbps. The other EFP is from emulated node Y

and its bandwidth is 30 Mbps. Therefore, the bandwidth of the

emulated link #2 remains 50 Mbps. The emulated packet

counter of link #2 is changed from 0 to 2. If the threshold was set

at two, the emulated link delay is increased from 8 to 10 (The

step value is also set by the network administrator).

 Fig. 5. Parameter deterministic method on emulated links

The optimal path is located by conducting a simple parallel

shortest path search. When a new traffic demand arises, an

EPSP is broadcast from the source router to each branch. The

bandwidths of passed links are recorded in the bandwidth field

of the EPSP. When the EPSP arrives at a new router, it is

rebroadcasted. If the EPSP arrives at a new link that has smaller

bandwidth than the value recorded in bandwidth field of the

EPSP, the smaller bandwidth value is written into the bandwidth

field. The index number of the passed link is also recorded in the

EPSP. Finally, EPSPs are collected at the destination router.

The EPSP that arrives first identifies the path that has the

smallest delay. Since the smallest bandwidth along the path is

also recorded in the EPSP, we can choose the optimal path that

has enough bandwidth and acceptable delay for each traffic

demand.

Fig. 6 shows an example of bandwidth recording. In this

example, an EPSP arrives at emulated link ¥#2. The bandwidth

recorded in the EPSP is 80, which is larger than the bandwidth

of emulated link #2, 50. Thus 80 is replaced by 50 in the EPSP.

The bandwidth value of emulated link #3 is 90 which is larger

than 50, and so the value of 50 is not replaced.

 Fig. 6. Link bandwidth recording method using emulated links

Our simple parallel shortest path search algorithm sends an

4

EPSP across each path between one source router and one

destination router. The packet that transits the shortest path will

arrive at the destination node first. This algorithm is

summarized as follows.

 Step1 Assign index numbers to all links and routers.

 Step2 The source router issues an emulated packet and

broadcasts it to each branch known to the source node.

 Step3 When the emulated packet passes through a link, the

index number of the link is recorded in the emulated packet.

When the emulated packet arrives at a neighboring router, the

emulated packet is rebroadcasted over all outgoing links except

the mirror of the incoming link.

 Step 4 Repeat step 3 until the first emulated packet arrives at

the destination node. The information of the first arrived

emulated packet includes the shortest path.

IV. PROTOTYPE IMPLEMENTATION OF THE PROPOSED ROUTING

ENGINE

We constructed an emulated network on a commercially

available DRP, DAPDNA-2, developed by IPFlex Inc [20-21].

DAPDNA-2 consists of a Digital Application Processor (DAP),

a high-performance RISC core, and Distributed Network

Architecture (DNA). The DNA is embedded in an array of 376

Processing Elements (PEs), which are comprised of

computation units, memory, synchronizers, and counters. The

DNA has 4 memory banks to store configurations. Only 1

memory bank is active while the others are for background

storage. DNA can change the network’s configuration by

loading one of the three stored configurations in background

memory.

An emulated network is constructed by linking emulated

nodes, each of which consists of several PEs. We set the

parameters of each PE to emulate the various functions

possessed by real routers and links. Figure

¥ref{fig:emulated_network} is an example of our emulated

network construction. There are 6 routers and 10 links in the

real network, so we construct 6 emulated routers and 10

emulated links connect these emulated routers and links. The

word size of DAPDNA-2 is 32 bits, so we read 32-bit data as an

EPSP from the main memory of DAPDNA-2, and transmit it

through the emulated network. The emulated packets are

broadcasted from the source router.

Finally, we collect the first EPSP at the destination router and

write it into memory where it can be accessed for later use. Fig 7

shows an example of designing a virtual node. To replicate a

degree-3 node, we use three PEs to construct a virtual node that

has 3 input ports and 3 output ports.

Fig. 7. Example of virtual node structure having node degree of three

 Our algorithm was implemented on the evaluation board,

DPADNA-EB4. DPADNA-EB4 is a full-size PCI board as

shown in Fig 8 and is simply plugged into a PCI slot of the PC.

There are two DAPDNA-2 processors on each DPADNA-EB4.

 Fig. 8. The evaluation board, DPADNA-EB4

A. Implementation of shortest path search

In this implementation of shortest path search, we define the

bitmap of the EPSP; the link delay is fixed. This implementation

does not consider bandwidth. The design of the virtual node and

virtual link is also described in this subsection.

We first describe the bitmap of the EPSP, see Fig. 7. In this

example, a 32-bit EPSP is divided into two fields. The lower 26

bits are link index number field. The upper 6 bits is the link

bandwidth field but this field is not used in this implementation.

This EPSP bitmap supports networks with up to 26 links. To

handle a network that has 52 links, we would simply use two 32

bits EPSPs to collect path information. (We define these two

packets as one set.) Every branch point rebroadcasts the set of

emulated packets.

 Fig. 9 Example of bitmap of an EPSP

The functions of an emulated router are shown as follows.

� Copy the EPSP from the input port.

� Send the EPSP to all other output ports except the output

port that corresponds to the input port.

� Avoid packet contention. This means preventing EPSP

5

conflict when two or more EPSPs arrived at an

emulated router at the same time.

The functions of an emulated link are shown as follows.

� Record the index number of the link into the arrived

emulated packet.

� Prevent the looping of emulated packets. This is done by

checking the bitmap of the emulated packet.

� Generate a delay corresponding to the link cost of the

real link. Delay is expressed in units of the clock

cycle of DAPDNA-2.

Fig. 11 shows an example of our shortest path search on

DAPDNA-2. There are 6 routers and 9 links in Fig. 11. First, we

assign index numbers to all routers and links. In the example, all

32 bits of an EPSP are used for recording the index numbers of

links; 9 bits are shown in the example because there are only 9

links. Each EPSP is initialized with 000000000.

 Fig. 10. Execution example of proposed algorithm

Step 1 At the source router, we broadcast the emulated packet

containing 000000000. The emulated packet is passed to link

¥#1 and link ¥#2.

Step 2 The emulated packets pass through link ¥#1 and ¥#2,

and the link numbers are recorded in the emulated packets. The

outputs of link ¥#1 and link ¥#2 are 000000001 and 000000010,

respectively. Next, node 1 sends 000000001 to link ¥#3 and ¥#4

in the same way. The output emulated packets of link ¥#3 and

¥#4 are 000000101 and 000001001.

 Step 3 When the EPSP arrives at other nodes; step 2 is

repeated until the first EPSP arrives at the destination router.

Step 4 Finally, the shortest path information is determined

from the contents of the first EPSP.

 In the network shown in Fig. 11, the first EPSP to arrive at the

destination router holds 11000101. This means that the shortest

path is formed by links #1, #3, #7 and #8. As a result, the

shortest path is A-B-D-E-F. Our proposed approach also can

collect all route information between a source node and a

destination node, i.e. not just the shortest path.

B. Change configuration dynamically

| DAPDAN-2 has three internal memory banks. Therefore,

we can store three network topologies as a hardware

configuration in DAPDNA2. If the configuration is stored in

internal memory, DAPDAN-2 can change the configuration

only in few seconds. Fig. 12 shows an example. In this example,

three different network topologies are stored in memory bank.

 Fig. 11. Three slice in DAPDNA-2

V. EXPERIMENTAL RESULTS

 In this section, we compare the shortest path calculation time

between proposed method and the method that used in the

current routing system. We implement the shortest path search

in our emulated network. We compare it to Dijkstra’s algorithm,

as well as Breadth first search method. The current path search

methods are implemented as C applications and we ran them on

a 3 GHz Intel Pentium 4 processor. Our method is executed on

the 166 MHz reconfigurable processor of DPADNA-2.

A. Comparison result of shortest path calculation

 We measured the calculation clocks of Dijkstra’s algorithm

and our proposed algorithm. The network topology is the same

as that in Figure 4. We executed Dijstra’s algorithm and our

proposed algorithm 100 times and averaged the execution

times. The simulation results are shown in Table 1.

 The execution time of our algorithm is faster than the

execution time of Dijkstra's algorithm because our algorithm is

executed in parallel. However, the Dijkstra's algorithm runs

serially. Therefore, under the same conditions, our algorithm

runs faster than Dijkstra's algorithm. Additionally, the

calculation time of Dijkstra's algorithm will increase in a larger

network. The calculation time of our algorithm only depends on

TABLE I
EXECUTION TIME OF DIJKSTRA’S ALGORITHM AND OUR PROPOSED ALGORITHM

Execution time: (μs)

 Dijkstra’s algorithm

 Proposed Algorithm

6

the total cost of the shortest path. Therefore, our algorithm can

search shortest path faster even if the network is large.

B. Comparison result of the all paths calculation

 In this sub section, we compared the all paths calculation

time. In this paper, all paths search is to find paths connecting

the given source node to anywhere in the network. For

example, the source is node a fig.10. All paths search is to list

all shortest path between node A and other nodes that includes

node B, node C, node D, node E and node F. We measured the

execution time taken by the breadth first search algorithm and

our all path pattern search method to collect all route

information. The results are shown in Table 2.

 We can see that our algorithm collects all route information

faster than the breadth first search algorithm because our

algorithm broadcasts emulated packets and collects link

information from each route at the same time.

VI. CONCLUSION

The SDN approach is a useful solution to a lot of current

network problem such as management. OpenFlow is a key

technology to realize SDN and the scalability of Openflow

controller is one of a major issue. When the controller manage a

large network, routing speed is becomes a problem. We

challenged the scalability of the OpenFlow controller. In this

paper, we proposed an on-chip routing engine allows OpenFlow

controller to achieve high-speed path calculation. We

implemented a prototype of the routing engine on a DRP, and

performance evaluations on path calculation were conducted.

The results show that our prototype routing engine is 19 times

faster than the current shortest path search method that is

Dijkstra's algorithm. Therefore our proposed system can

improve the routing speed of OpenFlow controller and enable

high scalability of OpenFlow controller.

ACKNOWLEDGMENT

 This work is partly supported by the National Institute of

Information and Commucations Technology (NICT).

REFERENCES

[1] Goth, G. "Software-Defined Networking Could Shake Up More than

Packets," Internet Computing, IEEE, Vol 15, Issue 4, pp.6-9, 2011

[2] N/McKeown, T.Anderson, H. Balakrishnam, G. Parulkar, L. Peterson,

J.Rexford, S.Shenker, and J.Turner, "OpenFlow: Enabling innovation in

campus networks," ACM SIGCOMM Computer Communication

Review, Vol.38, Issue 2, no. 2, pp. 69-74, 2008.

[3] Steven J., Vaughan-Nichols, "OpenFlow: The Next Generation of the

Network?” Computer, Vol. 44, Issue 8, pp.13-15, 2011

[4] Kanaumi, Y.; Saito, S.; Kawai, E. "Toward large-scale programmable

networks: Lessons learned through the operation and management of a

wide-area OpenFlow-based network," Network and Service Management

(CNSM), pp.330-333, 2010.

[5] Shimonishi, H.; Ishii, S.," Virtualized network infrastructure using

OpenFlow, " Network Operations and Management Symposium

Workshops (NOMS Wksps), 2010 IEEE/IFIP, pp.74 – 79, 2010.

[6] "GENI," http://www.geni.net/.

[7] Zheng Cai, Allan L. Cox, T.S. EugeneNg, " Maestro: A system for

Scalable OpenFlow Control", Rice University Technical Report

TR10-08, December 2010

[8] Ramjee, R.; Ansari, F.; Havemann, M.; Lakshman, T.V.; Nandagopal, T.;

Sabnani, K.; Woo, T., "Separating Control Software from Routers,”

Communication System Software and Middleware, pp.1-10, 2006.

[9] Cisco IOS,
http://www.cisco.com/en/US/products/ps6537/products_ios_sub_catego

ry_home.html

[10] Juniper Networks,

http://www.juniper.net/jp/jp/products-services/nos/junos/

[11] A.Doria, F.Hellstrand, K.Sundell, and T.Worster, "General switch

management protocol (GSMP) v3," Request For Comments (RFC),

no.3292, Jun. 2002.

[12] B.Heller, "OpenFlow switch specification version 0.8.9,"

http://www.openflow.org/documents/openflow-spec-v0.8.9.pdf

[13] N.Gude, T.Koponen, J.Pettit. B.Pfaff, M. Casado, N. McKeown and S.

Shenker, "NOX: towards an operating system for networks." SIGCOMM

Computer Communication Rev., vol. 38, pp. 105-110, July 2008.

[14] NOX, http://www.noxrepo.org/

[15] Trema, http://trema.github.com/trema

[16] Beacon, http://www.beaconcontroller.net/

[17] Floodlight, http://floodlight.openflowhub.org/

[18] Open vSwitch, http://openvswitch.org/

[19] H.Amano,"A survey on dynamically reconfigurable processors," IEICE

Transactions on Communications, vol. E89-B, no.12, pp.3179-3187,

Dec.2006

[20] T.Sugawara, K.Ide, and T.Sato, "Dynamically reconfigurable processor

implemented with IPFlex's DAPDNA technology," IEICE Transactions

on Information and Systems, vol. E87-D, no.8, pp.1997-2003, Aug.2004.

[21] " Dynamically reconfigurable processor, DAPDNA-2,"

http://www.tokyo-keiki.co.jp/hyd/e/products/20120508_dap01.html,

2010..

Shan Gao received B.E. and M.E degrees from Keio

University, Japan, in 200in Graduate School of

Science a8 and 2010, respectively. He is currently

working toward the Ph.D. degree in Graduate school

of Science and Technology, Keio University, Japan.

Since 2010, he has been researching about the

network architecture and traffic engineering on the

next generation optical network. In 2010, he will

became a research assistant of Keio University

Global COE Program, ``High-level Global

Cooperation for Leading-edge Platform on Access Spaces'' by Ministry of

Education, Culture, Sports, Science and Technology, Japan. He is a student

member of the IEEE of Japan.

Satoru Okamoto received the B.E. and M.E. degrees

from Keio University, Japan, in 2005 and 2007,

respectively. He is currently working toward the

Ph.D. degree in Graduate School of Science and

Technology, Keio University, Japan. His research

interests include network architecture and traffic

engineering on the next generation optical network.

In 2007, he became a research assistant of Keio

University Global COE Program, ``High-level

Global Cooperation for Leading-edge Platform on

TABLE Ⅱ

EXECUTION TIME OF THE BREADTH FIRST SEARCH ALGORITHM AND OUR

PROPOSED ALGORITHM

Execution time: (μs)

 Breadth First Search

Proposed method

 3500

 2

7

Access Spaces'' by Ministry of Education, Culture, Sports, Science and

Technology, Japan. He is a student member of the IEEE, the OSA, and the

IEICE. Satoru Okamoto received the B.S., M.S, and Ph.D. degrees in

electronics engineering from Hokkaido University, Hokkaido, Japan in 1986,

1988 and 1994 respectively. In 1998, he joined Nippon Telegraph and

telephone Corporation (NTT), Japan. Here, he engaged in research on ATM

cross-connect system architectures, photonic switching system, optical path

network architectures, and developed GMPLS controlled HIKARI router

(Photonic MPLS router) systems. He leads several GMPLS related

interoperability trials in Japan, such as the Photonic Internet Lab (PIL), OIF

worldwide interoperability demo, and Keihanna Interoperability Working

Group. From 2006, he has been an Associate Professor of Keio University. He

is a vice co-chair of Interoperability Working Group of Kei-han-na

Info-communication Open Laboratory. He is now promoting several research

projects in the photonic network area. He received the young Researchers’

Award and the Achievement Award in 1995 and 2000, respectively. He has

also received the IEICE/IEEE HPSR2002 outstanding paper award. He is

associate editor of the IEICE transactions and the OSA Optics Express. He is an

IEEE Senior Member and an IEICE Fellow.

Naoaki Yamanaka graduated from Keio University,

Japan where he received B.E., M.E., and Ph. D.

degrees in engineering in 1981, 1983 and 1991,

respectively. In 1983 he joined Nippon Telegraph

and Telephone Corporation's (NTT's)

Communication Switching Laboratories, Tokyo,

Japan, where he was engaged in research and

development of a high-speed switching system and

high-speed switching technologies for Broadband

ISDN services. Since 1994, he has been active in the

development of ATM base backbone network and

system including Tb/s electrical/Optical backbone switching as NTT's

Distinguished Technical Member. He is now researching future optical IP

network, and optical MPLS router system. He is currently a professor of Keio

Univ. and representative of Photonic Internet Lab. (PIL). He has published over

126 peer-reviewed journal and transaction articles, written 107 international

conference papers, and been awarded 182 patents including 21 international

patents. Dr. Yamanaka received Best of Conference Awards from the 40th,

44th, and 48th IEEE Electronic Components and Technology Conference in

1990, 1994 and 1998, TELECOM System Technology Prize from the

Telecommunications Advancement Foundation in 1994, IEEE CPMT

Transactions Part B: Best Transactions Paper Award in 1996 and IEICE

Transaction Paper Award in 1999. Dr. Yamanaka is Technical Editor of IEEE

Communication Magazine, Broadband Network Area Editor of IEEE

Communication Surveys, and was Editor of IEICE Transaction as well as vice

director of Asia Pacific Board at IEEE Communications Society. Dr.

Yamanaka is an IEEE Fellow.

Sho Shimizu received the B.E., M.E. and Ph.D

degrees from Keio University, Japan, in 2005, 2007

and 2010 respectively. He is currently working in

FUJITSU Lab, Japan. His research interests include

network architecture and traffic engineering on the

next generation optical network. In 2007, he became a

research assistant of Keio University Global COE

Program, ``High-level Global Cooperation for

Leading-edge Platform on Access Spaces'' by

Ministry of Education, Culture, Sports, Science and

Technology, Japan. He is a member of the IEEE, the OSA, and the IEICE.

