
3102
IEICE TRANS. COMMUN., VOL.E92–B, NO.10 OCTOBER 2009

PAPER

Resource Minimization Method Satisfying Delay Constraint for
Replicating Large Contents

Sho SHIMIZU†a), Student Member, Hiroyuki ISHIKAWA†∗, Nonmember, Yutaka ARAKAWA†,
Naoaki YAMANAKA†, and Kosuke SHIBA††, Members

SUMMARY How to minimize the number of mirroring resources un-
der a QoS constraint (resource minimization problem) is an important is-
sue in content delivery networks. This paper proposes a novel approach
that takes advantage of the parallelism of dynamically reconfigurable pro-
cessors (DRPs) to solve the resource minimization problem, which is NP-
hard. Our proposal obtains the optimal solution by running an exhaustive
search algorithm suitable for DRP. Greedy algorithms, which have been
widely studied for tackling the resource minimization problem, cannot al-
ways obtain the optimal solution. The proposed method is implemented on
an actual DRP and in experiments reduces the execution time by a factor of
40 compared to the conventional exhaustive search algorithm on a Pentium
4 (2.8 GHz).
key words: content delivery network, replica placement, dynamically re-
configurable processor, exhaustive search

1. Introduction

Demand continues to grow for downloading rich contents,
for example DVD-quality or high definition videos, through
the Internet. Two factors are the key to meeting this demand:
local content sources and adequate transfer capacity. Opti-
cal networks can provide the high-speed and high-capacity
pipes needed; they are now commonly used in backbone net-
works and can handle bandwidth-consuming applications if
the transfer distances are reasonable. This paper focuses on
the other factor, an shows how to determine where to site
content sources.

Identifying the optimum number and location of con-
tent sources (servers) involves an understanding the trade-
offs between performance and cost. Using just a few servers
is very effective in reducing initial investment costs but
the servers will experience extremely high loads since they
must deal with simultaneous download requests from many
clients. Moreover, the average transfer distance is high
which degrades the QoS and indeed overall network perfor-
mance.

The content delivery network (CDN) was proposed to
improve network resource utilization efficiency for large
contents distribution [1], [2]. CDN consists of two types of
servers: origin server and replica server. The number of ori-

Manuscript received February 10, 2009.
Manuscript revised June 10, 2009.
†The authors are with the Graduate School of Science for Open

and Environmental Systems, Keio University, Yokohama-shi, 223-
8522 Japan.
††The author was with IPFlex Inc., Tokyo, 141-0021 Japan.
∗Presently, with Kansai Electric Power Co. Inc.

a) E-mail: shimizu@yamanaka.ics.keio.ac.jp
DOI: 10.1587/transcom.E92.B.3102

gin servers is usually one (for each contents provider), and
the many replica servers are spread throughout the service
area. Origin server holds the original contents and delivers
them to the replica servers as needed to ensure user requests
can be satisfied. The contents stored in a replica server are
called replicas. CDN promises high-speed downloads since
the client downloads the data from the server nearest to the
client in terms of network connectivity.

In CDN, replica placement impacts the performance
which includes the load on the origin server and the net-
work since data placement decisions must be made on a per
content basis and be made dynamically in response to user
requests. Minimizing the number of mirroring resources
(servers) under a Quality of Service (QoS) constraint is a
key issue in CDN, so research in this area has been quite
active. A tough problem to select which nodes should host
which replicas.

The distance between two nodes is used as a metric for
QoS in CDN. A request must be resolved by a server within
the distance specified by the request because all clients want
to download contents within the allotted time period. Ev-
ery node knows the nearest replica server that holds the re-
quested data and the request is sent to the replica server that
is closest to the client. The goal is to find a replica place-
ment that satisfies all requests without violating any range
constraint, and that minimizes the update and storage cost at
the same time. This paper emphasizes the optimization of
the number of replicas under the delay constraint.

Replica placement problem is derived from the set
cover problem which is known to be NP-hard [3]. There-
fore, calculation time increases rapidly with network scale.
Greedy algorithms have been widely studied since they yield
sub-optimal solutions reasonably quickly [4]–[11]. How-
ever, it has been proven mathematically that no greedy algo-
rithm can attain the optimal solution [3]. Sub-optimum so-
lutions have higher replicating cost, i.e. the number of repli-
cas, than the optimal solution. The goal then is to secure the
optimal replica placement within some practical time.

Our solution to obtaining the optimal solution to the
replica placement problem is based on combining advanced
processors with suitable algorithms. It is not realistic to ob-
tain the optimal solution with a Neumann-type processor
given the number of all solution candidates. To drastically
reduce the calculation time, we propose a novel approach
that uses an exhaustive search algorithm that suits the paral-
lelism offered by a dynamically reconfigurable parallel pro-

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

SHIMIZU et al.: RESOURCE MINIMIZATION METHOD SATISFYING DELAY CONSTRAINT FOR REPLICATING LARGE CONTENTS
3103

cessor (DRP). The proposal is the marriage of advances in
software and hardware.

Our proposal is implemented on a commercially avail-
able DRP, DAPDNA-2 of IPFlex Inc [12]. DAPDNA-2
consists of a Digital Application Processor (DAP), a high-
performance RISC core, and Digital Network Architecture
(DNA), a dynamically reconfigurable two-dimensional ma-
trix. DNA is embedded in an array of 376 Processing El-
ements (PEs), which are comprised of computation units,
memory, synchronizers, and counters. The PE Matrix cir-
cuitry can be reconfigured freely into the structure that best
suits the current application.

It is not feasible to solve the large-scale replica place-
ment problem on a program counter-based processor. Our
proposed algorithm divides the problem in an optimal man-
ner and subjects the pieces to pipeline operation. Whereas
the time complexity of conventional exhaustive search using
Beeler’s algorithm [13] is O(nCk), the time complexity of the
proposed algorithm is O(

√
nCk). Experiments show that the

proposed method reduces the execution time by a factor of
40 times compared to conventional exhaustive search using
Beeler’s algorithm on a Intel Pentium 4 (2.8 GHz).

The rest of this paper is organized as follows. Section 2
details the related work on the replica placement problem
and combination algorithm. In Sect. 3, we propose a fast so-
lution to the replica placement problem; it divides the candi-
dates and pipelines them on a DAPDNA-2. Section 4 eval-
uates the performance of our implementation. Finally, we
conclude this paper in Sect. 5.

2. Replica Placement Problem

The network is represented by an undirected graph G =

(V, E), where V is the set of servers, and E ⊆ V × V de-
notes the set of network links among the servers. Each link
(u, v) ∈ E is associated with a cost d(u, v) that denotes the
communication cost of the link between servers u, v. We
assume that the graph is connected, so that one server can
connect to any other server via a path. We define the com-
munication cost of a path as the sum of the communication
cost of the links along the path. Because we assume that
each server knows the nearest replica, we define d(u, v) be-
tween two servers u, v to be the communication cost of the
shortest path between them. Every server u has a storage
cost s(u), which denotes the cost to put a replica on server
u. Different servers usually have different storage costs.

Figure 1 illustrates replica placement. The numbers in
the circles are server indices between 0 and n − 1, where n
is the total number of servers. The number on a link is the
communication cost of the link.

Each server in the network serves multiple clients, al-
though we don’t illustrate the clients in Fig. 1. A client sends
its request to its associated server, which then processes the
request. If the local server has the requested data, the re-
quest is processed locally. Otherwise, the request is directed
to the nearest server that has the replica. In addition, we ig-
nore the communication cost from clients to servers because

Fig. 1 Origin server and replica servers {1, 5} can cover all nodes when
the quality requirement is 8.

it doesn’t impact the replication decision.
Without loss of generality, we assume that server 0 is

origin server r. Initially, only the origin server has the con-
tents. A replica server is a server that has replicated con-
tents. A replication strategy, R ⊆ V − {r}, is a set of replica
servers.

We use the replication cost to evaluate replication
strategies. The replication cost T (R) of replication strategy
R is defined as the sum of storage cost S (R) and update cost
U(R).

T (R) = S (R) + U(R) (1)

Storage cost: The storage cost of replication strategy R is
the sum of all storage costs of the replica servers.

S (R) =
∑
v∈R

s(v) (2)

Update cost: In order to maintain data consistency, origin
server r issues update requests to every replica server. We
assume that there is an update distribution tree T , which
connects all servers in the network. For example, we use
a shortest path tree rooted at the origin server as the update
distribution tree. Origin server r multicasts update requests
through links on this tree until all replica servers in R receive
the update request. Every node receives the update request
from its parent and relays these requests to its children ac-
cording to the update distribution tree.

Let p(v) be the parent of node v in the update distribu-
tion tree, and Tv be the subtree rooted at node v. If Tv∩R � φ,
link (v, p(v)) participates in the update multicast. As a result,
the update cost is the sum of the communication costs from
these links (v, p(v)). For example, if the replication strategy
R is {1, 5} in 1, then the update cost is 11 + 15 = 26.

U(R) =
∑

v�r,Tv∩R�φ

d(v, p(v)) (3)

Every server u has a service quality requirement q(u).

3104
IEICE TRANS. COMMUN., VOL.E92–B, NO.10 OCTOBER 2009

The requirement mandates that all requests generated by u
will be served by a server at less than q(u) communication
cost. We assume that every server in the network knows the
replica server nearest to itself. If a request is served by the
nearest replica server within q(u), the request is satisfied,
otherwise, the request is violated. If all requests in the sys-
tem are satisfied, the replication strategy is called feasible.

min
w∈R∪r

d(v, w) ≤ q(v) (4)

The replica placement problem is to find the feasible repli-
cation strategy that minimizes the replication cost in Eq. (1)
[10]. As an example, we assume that the quality require-
ment is 8 for all servers and the replication strategy is {1,
5} in Fig. 1. We can verify that the replication strategy to-
gether with the origin server can satisfy all requests within
the network. The replication strategy {1, 5} covers all nodes
in Fig. 1. The replica placement problem is derived from the
set cover problem which is known to be NP-hard [3]. The
definition of the set cover problem is as follows.

Minimum Weight Set Cover Problem: Let U be the
universal set and S be the family of U. The solution is sub-
family S such that the weight is minimized and

⋃
S ∈S S = U

is satisfied.
The replica placement problem is NP-hard because the

minimum weight set cover problem is known to be NP-hard.
Several greedy algorithms have been proposed to decrease
the calculation time [4]–[11]. Johnson proposed a greedy al-
gorithm against the minimum weight set cover problem [4].
This algorithm is a straightforward heuristic. The time com-
plexity is proportional to n. In [5], [8], fan-out based replica
placement algorithms were proposed. They put replicas on
servers in descending order of server degree. Kangasharju
et al. proved that their target replica placement optimiza-
tion problem is NP-complete, and proposed some heuristic
algorithms [9]. Tang et al. investigated QoS-aware replica
placement problems to elucidate QoS requirements, and
proposed the l-Greedy-Insert and l-Greedy-Delete algorithm
[10]. They showed that the QoS-aware placement problem
for replica-aware services was NP-complete. Wang et al.
proposed a heuristic algorithm called Greedy-Cover [11].
Experiments indicated that the proposed algorithm found
near-optimal solutions effectively and efficiently. Karlsson
et al. provided a framework for evaluating replica placement
algorithms [7], and compared several replica placement al-
gorithms [6]. [6] also provides a comprehensive survey of
replica placement algorithms. However, note that it has been
proven mathematically that no greedy algorithm can obtain
the optimal solution [3]. Therefore, to get the optimal solu-
tion, a fast exhaustive search algorithm is required.

Exhaustive search algorithms generally consist of the
following three procedures.

1. Generate all solution candidates, in other words all
replication strategies

2. Check each solution candidate as to whether all nodes
are covered

3. Calculate the replicating cost of each solution candi-

date

The above procedures are executed over all of replication
strategies, and the optimal solution is selected. The par-
allelization of procedures 2 and 3 is easily achieved be-
cause the replication strategies are completely independent
in these procedures. However, the parallelization of proce-
dure 1 is not easy, so procedure 1 is likely to become a bot-
tleneck. Therefore, we focus on a solution candidate gener-
ation scheme to speed up the exhaustive search algorithm in
this paper.

Exhaustive search algorithms to solve the Boolean Sat-
isfiability Problem (SAT), which is an NP-hard problem
as well as the set cover problem, have been implemented
on FPGAs [14]–[17]. Instance-specific hardware is em-
ployed to reduce the execution time in these implementa-
tions. Thus, we have to re-generate instance-specific hard-
ware for each problem instance, i.e. the hardware compila-
tion, which is a significant overhead, is required. In addition,
the problem instance is limited in the implementations of
[15], [17] since it was assumed that the forms of the boolean
expressions they contained were limited.

3. Proposed Method

Combinatorial algorithms can be applied to problems de-
rived from the set cover problem, such as the replica place-
ment problem. The calculation time of the replica place-
ment problem increases rapidly with network scale. We pro-
pose a new method that generates and tests all combinations
rapidly to obtain the optimal solution in a feasible time. Our
proposed method divides combinations into different groups
which are executed in parallel. The first data of each group
are entered per clock cycle following pipeline operation. We
implemented Beeler’s algorithm [13], which can generate
all combinations in ascending order, on DAPDNA-2.

Figure 2 shows the pipeline operation when 6C3 is di-
vided into 4 groups. 1st, 6th, 11th and 16th data are in-
put data because 20 combinations are divided into 4 groups.
DNA matrix outputs Data2, Data7, Data12 and Data17,
which are the next input data in Fig. 2. The result of the
last group is delayed by 3 clocks compared to that of the
first group. The overall execution time is about 75 percent
shorter than the original execution time.

There are two problems that need to be solved. First,
how can we calculate the first data of each group when the

Fig. 2 First data of each group are entered per clock cycle by pipeline
operation. DNA matrix outputs Data2, Data7, Data12 and Data17, which
are the next input data.

SHIMIZU et al.: RESOURCE MINIMIZATION METHOD SATISFYING DELAY CONSTRAINT FOR REPLICATING LARGE CONTENTS
3105

combinations are divided into different groups? Beeler’s al-
gorithm can generate all combinations in ascending order
but there are data dependencies. It’s difficult to calculate any
order pattern because the difference between neighboring
patterns is not constant. We solve this problem by proposing
an algorithm that can generate patterns in any order.

Second, what is the optimal number of divisions in
terms of minimizing the overall number of calculation
clocks needed? Increasing the number of divisions de-
creases the overall calculation clock number but there is a
lower limit beyond which the overall clock number starts
to increase. The optimal number of divisions depends on
the number of combinations and the calculation clocks of
Beeler’s algorithm. In order to solve this problem, we tack-
led the theory behind the optimal number of divisions.

3.1 Beeler’s Algorithm and Any-Order Pattern Algorithm

M. Beeler et al. proposed an algorithm that generates all
combinations and picks k outcomes from n possibilities
[13]. These combinations can be expressed in n-digit binary
form. For example, 010110 represents (2, 3, 5) when n = 6.
Combinations can be ordered as follows; (2, 3, 5) < (2, 4, 5)
because 010110 < 011010. Beeler’s algorithm can gener-
ate all combinations from 000111 to 111000 in order. The
details of the algorithm are as follows.

1. Let S 1 be the pattern in which all bits are unset except
for the least significant bit of combination X.

2. R = X + S 1

3. Let S 2 be the pattern in which all bits are unset except
for the least significant bit of combination R.

4. S 3 = (S 2/S 1)
 1 − 1
5. Y = R|S 3 is next to X.

When n = 6, k = 3, X = 001110, for example, Y is calcu-
lated as follows.

1. S 1 = 000010
2. R = X + S 1 = 010000
3. S 2 = 010000
4. S 3 = (S 2/S 1)
 1 − 1 = 001000
 1 − 1 = 000011
5. Y = R|S 3 = 010011

We propose a new algorithm that generates any order
pattern in combinations sorted in ascending order. The fol-
lowing equation is generally true.

nCk =

n−1∑
i=k−1

iCk−1 (5)

If you want to get m-th pattern, find x1, which is the smallest
value among the values of x satisfying Eq. (6). iCk−1 corre-
sponds to the number of the patterns whose i-th bit is the
most significant bit, and where the number of 1’s between 0
and the (i−1)-th bit is k−1. Therefore, x1 means the patterns
that include the m-th pattern, and the highest bit to be set at
1 of the patterns is the x1-th bit.

x∑
i=k−1

iCk−1 ≥ m (k − 1 ≤ x1 ≤ n − 1) (6)

x1Ck−1 means the number of the patterns whose x1-th bit is
the most significant and the number of 1’s between 0 and
(x1 − 1)-th bit is k− 1 because the number of 1’s is k in total.
Hence, the x1-th bit of the m-th pattern is 1. The m-th pattern
corresponds to m − ∑x1−1

i=k−1 iCk−1-th in x1Ck−1. Replace m as
follows.

m→ m −
x1−1∑

i=k−1

iCk−1 (7)

Next, find x2, which is the smallest value among the value
of x satisfying the following inequality.

x∑
i=k−2

iCk−2 ≥ m (x ≤ x1 − 1) (8)

x2Ck−2 represents the patterns whose highest bit to be set at
1 is the x2-th bit and there are k−2 1’s between 0 and x2−1.
Hence, the x2-th bit of the pattern is 1. x1, x2, · · · , xk can be
obtained by repeating k times in a similar way. Setting the
corresponding bits to 1 yields get the m-th pattern.

For example, the 6th pattern (m = 6) in 6C3 can be
obtained as follows.

6C3 =2 C2 +3 C2 +4 C2 +5 C2 = 1 + 3 + 6 + 10 (9)

Apply the Eq. (5) to 4C2 because 4C2 includes the 6th pat-
tern. Hence, x1 = 4,m→ 2.

4C2 =1 C1 +2 C1 +3 C1 = 1 + 2 + 3 (10)

Apply the Eq. (5) to 2C1 because 2C1 includes the 2nd pat-
tern. Hence, x2 = 2,m→ 1.

2C1 =0 C0 +1 C0 = 1 + 1 (11)

The 1st pattern corresponds 0C0. Hence, x3 = 0. Setting the
corresponding bits to 1 yields the 6th pattern, 010101.

3.2 Optimal Number of Divisions

Let a be the number of clocks taken to calculate any order
pattern and b be the number of clocks to execute Beeler’s
algorithm. b (nCk − 1) clocks are required to generate all
combinations and pick k outcomes from n possibilities. iC j

is the number of j-selections from i elements, where i, j are
nonnegative integers. When we divide the combinations into
2 groups, a+ b(nCk−1)

2 +1 clocks are required. When we divide
the combinations into 3 groups, 2a + b(nCk−1)

3 + 2 clocks are
required. When we divide the combinations into x groups in
a similar way, y clocks are required as follows.

y = (x − 1)a +
b(nCk − 1)

x
+ x − 1

=
b(nCk − 1)

x
+ (a + 1)x − a − 1 (12)

According to a relationship between arithmetic mean and

3106
IEICE TRANS. COMMUN., VOL.E92–B, NO.10 OCTOBER 2009

geometric mean,

y =
b(nCk − 1)

x
+ (a + 1)x − a − 1

≥ 2

√
b(nCk − 1)

x
(a + 1)x − a − 1

= 2
√

b(nCk − 1)(a + 1) − a − 1 (13)

The equality is satisfied if and only if b(nCk−1)
x = (a + 1)x.

Hence

x =

√
b(nCk − 1)

a + 1
(14)

This is the optimal number of divisions.

3.3 Implementation on DAPDNA-2

Let n be the number of nodes except for the origin server
and k(≤ n) be the number of replicas. In our implementa-
tion, n ≤ 32 because the word size of PE is 32-bits long.
For example, we generate all combinations from 0000011
to 1100000 when n = 7, k = 2. Each node is represented
as 32-bit data. Let the i-th bit be 1 if this node covers node
i. In Eq. (4), the v-th and w-th bits of node w are 1 because
node w covers v. This information is called the cover data of
node w. If OR between the cover data of all replica servers
and that of the origin server yields 1111111, the replication
strategy covers all nodes. For example, the replication strat-
egy is node {1, 5} when the combination is 0010001. The
following equations are true in Fig. 1.

d(2, 0) ≤ q(2), d(3, 0) ≤ q(3), d(7, 0) ≤ q(7)

d(2, 1) ≤ q(2), d(4, 5) ≤ q(4), d(6, 5) ≤ q(6)

One strategy is node 0 (1000110), node 1 (0000011),
and node 5 (0111000). This replication strategy covers
all nodes because the result of the OR operation between
the cover data of the these nodes equals 1111111. If sev-
eral replication strategies cover all nodes, we choose the
minimum-cost replication strategy.

After calculating the optimal number of divisions, our
proposed algorithm consists of following 3 processes.

1. Calculate the first replication strategy of each group by
using the algorithm described in Sect. 3.1.

2. Execute Beeler’s algorithm.
3. Using the corresponding cover data, check that all

nodes can be covered.

The result of process (1), which is executed by DAP, is
stored in main memory. DNA reads this result from main
memory and executes processes (2) and (3) in pipeline man-
ner. The hardware compilation for each problem instance
is not required since our implementation is not instance-
specific, but application-specific. In addition, it can be gen-
erally applied to combinatorial optimization problems in-
cluding the set cover problem.

To support network with more than 32 nodes, we have

to make a small modification to the implementation; the
algorithm remains basically the same. Several words are
required to express a replication strategy and cover data.
Therefore, several words are treated as one data unit in the
implementation for over 32 nodes.

4. Performance Evaluation

In this section, we compare the execution time of a
DAPDNA-2 (166 MHz) with that of a Pentium 4 (2.8 GHz).
Let k be the number of replicas and n be the number of
nodes, except for the origin server, and d be the number of
partitions.

Figure 3 shows the execution time to generate all com-
binations when k = 8, in other words, 25 percent of all nodes
hold replicas. This percentage is derived from the result
shown in [11]. This reference shows that the average num-
ber of replicas is 25 percent. Black plots represent the con-
ventional exhaustive search using Beeler’s algorithm on the
Pentium 4, and white plots represent the proposed method
on the DAPDNA-2. Circle plots represent the theoretical
execution time, and square plots represent the experimental
execution time. Figure 3 has some margin of error between
theoretical and experimental times, but both demonstrate the
same overall tendency. In the proposed method, the execu-
tion time increases slowly with n because DAPDNA-2 cal-
culates in parallel using a pipeline operation. When n = 30,
DAPDNA-2 reduces the execution time by a factor of 40
compared to Pentium 4. It is noted that the clock frequency
of DAPDNA-2 is only 1/17th that of the Pentium 4. Such
large performance gain cannot not be attributed to only the
difference in processor architecture. The performance gain
is the result of combining the parallel processing of DRP
with the proposed algorithm.

Figure 4 shows the theoretical execution time when k
is 25 percent of the number of nodes, n. Let a be the cal-
culation clock of any-order algorithm and b be the calcula-

Fig. 3 DAPDNA-2 can reduce the execution time by 40 times compared
to Pentium 4 when the number of nodes is 30.

SHIMIZU et al.: RESOURCE MINIMIZATION METHOD SATISFYING DELAY CONSTRAINT FOR REPLICATING LARGE CONTENTS
3107

Fig. 4 Theoretical execution time versus the number of nodes when the
number of replicas k is 25 percent of the number of nodes n.

Fig. 5 Theoretical execution time versus the number of nodes when the
number of replicas k is 12.5 percent of the number of nodes n.

tion clock of Beeler’s algorithm. The measured values are
a = 330, and b = 33. Let tc be the theoretical execution time
of the Pentium 4 and tp be the theoretical execution time of
the DAPDNA-2. tc, tp are as follows.

tc =
b(nCk − 1)
2.8 × 109

(sec) (15)

tp =
2
√

b(nCk − 1)(a + 1) − a − 1
166 × 106

(sec) (16)

While the Pentium 4 requires about 7 days to generate all
combinations when the number of nodes, n equals 60, the
execution time of the proposed method is about 9 seconds.
This is because the time complexity of proposed algorithm
is O(

√
nCk). As a result, the proposed algorithm is scalable

against the number of nodes, n. Figures 5, 6, 7 show the
theoretical execution time when k is 12.5 percent, 50 per-

Fig. 6 Theoretical execution time versus the number of nodes when the
number of replicas k is 50 percent of the number of nodes n.

Fig. 7 Theoretical execution time versus the number of nodes when the
number of replicas k is 75 percent of the number of nodes n.

cent, and 75 percent of the number of nodes, n, respectively.
The dashed lines in the figures correspond to the value of 1
day. When k is equal to 12.5 percent of the number of nodes
and n = 88, the conventional method requires over 4 days to
generate all combinations. On the other hand, the execution
time of proposed method is about 7 seconds. If k is 50 per-
cent of the number of nodes and n = 48, the conventional
method takes about 4 days, while our proposal takes only
7 seconds. The result when k is 75 percent of the number
of nodes equals that when n is 25 percent of the number of
nodes. This is because the execution time is a function of
nCk and the equation nCk = nCn−k is always true. Until k
reaches 50 percent of the number of nodes, the execution
time increases. Therefore, when the value of k is small, we
can extract the optimal replica placement for a large network
within a certain value of the execution time.

3108
IEICE TRANS. COMMUN., VOL.E92–B, NO.10 OCTOBER 2009

Fig. 8 Theoretical execution time versus the number of partitions.

Figure 8 shows the execution time of the DAPDNA-
2 versus d when k = 8. Cross plots represent 25 nodes
and triangular plots represent 27 nodes. Optimal number of
divisions is calculated by Eq. (14). d = 328 when n = 25
and d = 472 when n = 27. The execution time increases if
d exceeds the optimal value.

Next, we compare the optimality of the replica place-
ments yielded by a greedy algorithm and the proposed al-
gorithm. The greedy algorithm employed in the evaluation
is the algorithm proposed in [11], Greedy-Cover algorithm.
We conducted simulations on 10000 different topologies.
The topologies were generated by NetworkX library [18],
and we used a random graph model (gnm random graph in
NetworkX). It is assumed average degrees of a node is 4,
and service quality requirement q(u) = 16, 20, 24. The cost
of a link is uniformly distributed between 1 and 15. Fig-
ure 9 compares the average optimality of Greedy-cover to
that of the proposed algorithm. In the evaluation, optimality
is defined as follows.

optimality =
s
o

(17)

where s is the number of replicas obtained by the replica
placement algorithm, and o is the optimal number of repli-
cas. From Fig. 9, the optimality of the Greedy-cover algo-
rithm tends to increase with the number of nodes. On the
other hand, the optimality of the proposed algorithm is al-
ways 1 since our proposal is based on exhaustive search, and
can always obtain the optimal solution. When q(u) is large,
the optimality of Greedy-cover algorithm is getting near that
of the proposal. It is because in case that the cover area is
large the total number of replicas is decreasing in both of
Greedy-cover and the proposed algorithm.

Figure 10 shows the execution time of Greedy-Cover
and the proposed algorithm. The execution time is the av-
erage value over 10000 topologies and the parameters are
as same as those used in the simulation of Fig. 9. The exe-
cution time of Greedy-Cover algorithm is always less than

Fig. 9 Comparison of the optimality of Greedy-Cover and the proposed
algorithm.

Fig. 10 Comparison of the execution time of Greedy-Cover and the
proposed algorithm.

that of the proposed algorithm for the same q(u). The execu-
tion time of the proposed algorithm is only 1.6 to 3.9 times
as large as that of Greedy-Cover algorithm even though the
proposed algorithm can always obtain the optimal solution.
The factor of the execution time decreases as the number of
nodes is increased. Thus, according to Fig. 9 and 10, the
proposed algorithm is effective when the number of nodes
is large or q(u) is small.

5. Conclusion

The distribution of large contents is a promising application
in the era of optical networks, but care is needed to keep
the costs feasible. The content delivery network can achieve
high resource efficiency in large content distribution if the
placement of replica servers is optimal. In order to obtain

SHIMIZU et al.: RESOURCE MINIMIZATION METHOD SATISFYING DELAY CONSTRAINT FOR REPLICATING LARGE CONTENTS
3109

the optimal solution, we have developed a novel approach
that is based on the use of DRPs while the conventional ap-
proaches are based on sequential processors. We have also
proposed a fast calculation method for exhaustive search
that well suits the DRP by fully utilizing the parallelism of-
fered by this type of processor. Our proposed method op-
timally divides the combinations and subjects the pieces to
pipelined processing. We propose a new algorithm that gen-
erates any order pattern in combinations that are sorted in as-
cending order, and derived the optimal number of divisions
theoretically. In addition, we implemented the proposed al-
gorithm on a commercially available DRP, DAPDNA-2, de-
veloped by IPFlex Inc. While the time complexity of con-
ventional method is O(nCk), the time complexity of the pro-
posed algorithm is O(

√
nCk).

Experiments have showed that the execution time of
the proposed algorithm increases slowly as n increases be-
cause DAPDNA-2 calculates in parallel using pipeline op-
erations. When n = 30, DAPDNA-2 reduces the execution
time by a factor of 40 compared to that needed by a Pentium
4.

Acknowledgment

The authors would like to thank Tomomi Sato and other staff
for helping with implementation on DAPDNA-2 (IPFlex
Inc). This work is supported in part by a Grant-in-Aid
for the Global Center of Excellence for high-Level Global
Cooperation for Leading-Edge Platform on Access Spaces
from the Ministry of Education, Culture, Sport, Science, and
Technology in Japan, and Grant-in-Aid for Scientific Re-
search (19360178). One of the authors appreciates Yoshida
Scholarship Foundation for its financial support.

References

[1] “Akamai.” http://www.akamai.com/
[2] “Mirror imge.” http://www.mirror-image.com/
[3] M.R. Garey and D.S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness, W.H. Freeman and Com-
pany, 1979.

[4] D.S. Johnson, “Approximation algorithms for combinatorial prob-
lems,” J. Comput. Syst. Sci., vol.9, pp.256–278, 1974.

[5] S. Jamin, C. Jin, A.R. Kurc, D. Raz, and Y. Shavitt, “Constrained
mirror placement on the internet,” INFOCOM 2001, 2001.

[6] M. Karlsson, C. Karamanolis, and M. Mahalingam, “A framework
for evaluating replica placement algorithm,” Tech. Rep., HP Labo-
ratories Palo Alto, Aug. 2002.

[7] M. Karlsson and M. Mahalingam, “Do we need replica placement
algorithms in content delivery netowrks?,” The International Work-
shop on Web Content Caching and Distribution (WCW), pp.117–
128, Aug. 2002.

[8] P. Radoslavov, R. Govindan, and D. Estrin, “Topology-informed in-
ternet replica placement,” Comput. Commun., vol.25, no.4, pp.384–
392, March 2002.

[9] J. Kangasharju, J. Roberts, and K.W. Ross, “Object replication
strategies in content distribution networks,” Comput. Commun.,
vol.25, no.4, pp.376–383, March 2002.

[10] X. Tang and J. Xu, “Qos-aware replica placement for content distri-
bution,” IEEE Trans. Parallel Distrib. Syst., vol.16, no.10, pp.921–
932, Oct. 2005.

[11] H. Wang, P. Liu, and J.J. Wu, “A qos-aware heuristic algorithm for
replica placement,” Grid Computing 7th IEEE/ACM International
Conference, pp.96–103, Sept. 2006.

[12] “IPFlex dynamically reconfigurable processor, DAPDNA-2.”
http://www.ipflex.com/, 2005.

[13] M. Beeler, R.W. Gosper, and R. Schroeppel, “Hakmem,”
http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html, Sept.
1972.

[14] M. Platzner and G.D. Micheli, “Acceleration of satisfiability algo-
rithms by reconfigurable hardware,” 8th International Workshop on
Field Programmable Logic and Applications (FPL98), pp.69–78,
1998.

[15] P. Zhong, M. Martonosi, P. Ashar, and S. Malik, “Using config-
urable computing to accelerate boolean satisfiability,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol.18, no.6, pp.861–
868, June 1999.

[16] M. Abramovici and J.T.D. Sousa, “A SAT solver using reconfig-
urable hardware and virtual logic,” J. Automated Reasoning, vol.24,
no.1-2, pp.5–36, Feb. 2000.

[17] T. Suyama, M. Yokoo, H. Sawada, and A. Nagoya, “Solving satisfia-
bility problems using reconfigurable computing,” IEEE Trans. Very
Large Scale Integr. Syst., vol.9, no.1, pp.109–116, Feb. 2001.

[18] “NetworkX.” http://networkx.lanl.gov/

Sho Shimizu received the B.E. and M.E.
degrees from Keio University, Japan, in 2005
and 2007, respectively. He is currently work-
ing toward the Ph.D. degree in Graduate School
of Science and Technology, Keio University,
Japan. His research interests include network
architecture and traffic engineering on the next
generation optical network. In 2007, he became
a research assistant of Keio University Global
COE Program, “High-level Global Cooperation
for Leading-edge Platform on Access Spaces”

by Ministry of Education, Culture, Sports, Science and Technology, Japan.
He is a student member of the IEEE and the OSA.

Hiroyuki Ishikawa received B.E. and M.E.
degrees from Keio University, Japan, in 2006
and 2008, respectively. His current research in-
terests are network algorithms and their hard-
ware implementation on dynamically reconfig-
urable processors. He is currently working for
Kansai Electric Power Co. Inc.

3110
IEICE TRANS. COMMUN., VOL.E92–B, NO.10 OCTOBER 2009

Yutaka Arakawa was born in Fukuoka,
Japan, in 1977. He received his B.E., M.E., and
Ph.D., from Keio University, Japan, in 2001,
2003, and 2006, respectively. Since 2001, he
has been researching optical network architec-
tures and traffic engineering, especially for Opti-
cal Burst Switching. From 2004 to 2006, he was
a research assistant of Keio University COE Pro-
gram in “Optical and Electronic Device on Ac-
cess Network” by Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan. He

is now assistant in the Yamanaka Lab. in Keio University, and is mainly en-
gaged in research on photonic network architectures, traffic engineering,
and network applications. He is a member of the Institute of Electrical and
Electronics Engineers (IEEE) of USA.

Naoaki Yamanaka graduated from Keio
University, Japan where he received B.E., M.E.
and Ph.D. degrees in engineering in 1981, 1983
and 1991, respectively. In 1983 he joined Ni-
ppon Telegraph and Telephone Corporation’s
(NTT’s) Communication Switching Laborato-
ries, Tokyo Japan, where he was engaged
in the research and development of a high-
speed switching system and high-speed switch-
ing technologies for Broadband ISDN services.
Since 1994, he has been active in the develop-

ment of ATM-based backbone networks and systems including Tb/s electri-
cal/optical backbone switching as NTT’s Distinguished Technical Member.
He is now researching future optical IP networks, and optical MPLS router
systems. He is currently professor of the Department of Information and
Computer Science, Faculty of Science and Technology, Keio University.
He has published over 112 peer-reviewed journal and transaction articles,
written 82 international conference papers, and been awarded 174 patents
including 17 international patents. Dr. Yamanaka received Best of Confer-
ence Awards from the 40th, 44th, and 48th IEEE Electronic Components
and Technology Conference in 1990, 1994 and 1998, TELECOM System
Technology Prize from the Telecommunications Advancement Foundation
in 1994, IEEE CPMT Transactions Part B: Best Transactions Paper Award
in 1996 and IEICE Transaction Paper award in 1999. Dr. Yamanaka is
Technical Editor of IEEE Communication Magazine, Broadband Network
Area Editor of IEEE Communication Surveys, Former Editor of IEICE
Transaction, TAC Chair of Asia Pacific Board at IEEE Communications
Society as well as Board member of IEEE CPMT Society. Dr. Yamanaka
is an IEEE Fellow.

Kosuke Shiba received the bachelor de-
gree in Science in Mathematics from University
of Tsukuba, Japan, in 1984, received the master
degree in Information Science and Electronics
from the University of Tsukuba, in 1986. From
1986 to 1992, he worked at Casio Computer Co.,
Ltd. He was an engineer at Rohm Co., Ltd, from
1992 to 1997, being responsible for the develop-
ment of a VLSI for MPEG1 decoders and image
processors. He worked as a manager at Mentor
Graphics Japan Co., Ltd. from 1997 to 2000. He

was a director of IPFlex Inc, being responsible for the management of de-
velopment activities on dynamically reconfigurable processors, application
development framework software, and applications for the processors. He
is also responsible for the research of dynamically reconfigurable architec-
tures. He is a member of IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

