A Study of Slot Switching-based All-optical Service Aggregation Network

Takehiro Sato, Kunitaka Ashizawa, Kazumasa Tokuhashi, Daisuke Ishii, Satoru Okamoto, Eiji Oki, and Naoaki Yamanaka (Keio University)

Current Network

- Various types of networks coexist.
- High energy consumption by many electrical signal processing

Service Aggregation Network

- Support various network services by a solitary programmable OLT and a large-scale single all-optical aggregation network
- Low energy consumption
- Facilitate the introduction of new services

DBA, encoding, framing, and transferring

OLT: Optical Line Terminal
ONU: Optical Network Unit
DBA: Dynamic Bandwidth Allocation

OLT: Optical Line Terminal
ONU: Optical Network Unit
DBA: Dynamic Bandwidth Allocation
Implementation method

WDM-based

- Allocate each wavelength to each network service
- Technology of WDM-PON is appropriable.

Disadvantage
- The number of services is limited by the number of multiplexable wavelength.
 - \(\Rightarrow \) **Low scalability**
- The granularity of bandwidth allocation is coarse.
 - \(\Rightarrow \) **Low bandwidth efficiency**
- Transceivers adapting various wavelengths is needed.
 - \(\Rightarrow \) **High CAPEX**

Slot Switching-based

- Allocate one or more fixed-length time slots to each service dynamically

Advantage
- The number of services depends on the number of time slots per cycle.
 - \(\Rightarrow \) **High scalability**
- The granularity of bandwidth allocation is higher than WDM-based method.
 - \(\Rightarrow \) **High bandwidth efficiency**

Challenge
- Tight synchronization of optical switches
- Clock distribution in SDH and mobile backhaul